Antidiabetic drug metformin mitigates ovarian cancer SKOV3 cell growth by triggering G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signaling pathway.
نویسندگان
چکیده
OBJECTIVE Metformin is one of most extensively prescribed oral hypoglycemic drug and has received increased attention in recent times for its antitumorigenic potential. Many possible mechanisms have been proposed for the ability of metformin to overturn cancer growth in vitro and in vivo. The objective of the present study was to evaluate the anticancer activity of metformin against ovarian SKOV3 cancer cells. MATERIALS AND METHODS Anticancer activity and IC50 value of metformin were determined by MTT assay. Reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and effect on cycle were determined by flow cytometry. Protein expression was estimated by Western blotting. RESULTS Results indicated that metformin exhibited an IC50 of 20 mM against ovarian SKOV3 cancer cell line. Metformin also caused DNA damage in SKOV3 cells and also prompted ROS-mediated alterations in mitochondrial membrane potential. Nonetheless, it triggered cell cycle arrest of SKOV3 at G2/M checkpoint. The activation of the PI3K/AKT/mTOR pathway plays a vital role in ovarian cancer tumorigenesis, progression and chemotherapy resistance. The results showed that metformin significantly inhibited the expression levels of key proteins of PI3K/Akt/mTOR signaling pathway. CONCLUSIONS We propose that metformin exhibits anticancer activity in SKOV3 cells and may prove beneficial in the management of ovarian cancers.
منابع مشابه
PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملAntitumor and Apoptotic Effects of Cucurbitacin a in A-549 Lung Carcinoma Cells Is Mediated via G2/m Cell Cycle Arrest and M-tor/pi3k/akt Signalling Pathway
BACKGROUND The main aim of this study was to demonstrate the antitumor potential of cucurbitacin A on A-549 NSCLC (non-small cell lung cancer cells). The effects of Cucurbitacin A on apoptotic induction, cell physic, cell cycle failure and m-TOR/PI3K/Akt signalling pathway were also investigated in the present study. MATERIALS AND METHODS MTT assay and clonogenic assay were carried out to stu...
متن کاملOsthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway
BACKGROUND To explore the effects of Osthole on the proliferation, cell cycle and apoptosis of human lung cancer A549 cells. METHODS Human lung cancer A549 cells were treated with Osthole at different concentrations. Cell proliferation was measured using the MTT assay. Cell cycle was evaluated using DNA flow cytometry analysis. Induction of apoptosis was determined by flow cytometry and fluor...
متن کاملThe research on lapatinib in autophagy, cell cycle arrest and epithelial to mesenchymal transition via Wnt/ErK/PI3K-AKT signaling pathway in human cutaneous squamous cell carcinoma
Cutaneous squamous cell carcinoma (cSCC) contributes to one of most common types of skin cancer. Epidermal growth factor receptor (EGFR) activation has been investigated to be associated with the development of cSCC. Lapatinib is an inhibitor targeting HER2/neu and EGFR pathway. We found that lapatinib can inhibit proliferation by enhancing apoptosis of human cSCC cell lines. The cSCC cell cycl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European review for medical and pharmacological sciences
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2017